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Abstract

One major goal in clinical applications of multi-state models is the estimation of tran-
sition probabilities. The usual nonparametric estimator of the transition matrix for non-
homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen
1978). However, two problems may arise from using this estimator: first, its standard
error may be large in heavy censored scenarios; second, the estimator may be inconsistent
if the process is non-Markovian. The development of the R package TPmsm has been
motivated by several recent contributions that account for these estimation problems.
Estimation and statistical inference for transition probabilities can be performed using
TPmsm. The TPmsm package provides seven different approaches to three-state illness-
death modeling. In two of these approaches the transition probabilities are estimated
conditionally on current or past covariate measures. Two real data examples are included
for illustration of software usage.
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1. Introduction
In many longitudinal studies it is often of interest to investigate time to a certain event. In
medicine the event is an ultimate outcome, such as diagnosis of “death” of the patient or
“relapse of the disease”. In addition to this primary event of interest one may observe also a
number of intermediate (“transient”) states, such as “local recurrence” and “distant metas-
tasis” in cancer studies. Analysis of such studies where individuals may experience several
events can be successfully performed using a multi-state model (MSM). An MSM is a stochas-
tic process (X(t), t ∈ T ) with a finite state space, where X(t) represents the state occupied
by the process at time t ≥ 0. Graphically, these models are represented by diagrams with rect-
angular boxes and arrows between them indicating respectively possible states and possible
transitions. In general, the future state transitions of an MSM may depend on past events.
However, for the special case of a Markov model the past and future are independent given
its present state. There exists an extensive literature on MSMs. Main contributions include
books by Andersen, Borgan, Gill, and Keiding (1993) and Hougaard (2000). Recent reviews
on this topic may be found in the papers by Hougaard (1999), Commenges (1999), Andersen
and Keiding (2002), Putter, Fiocco, and Geskus (2007) and Meira-Machado, de Uña-Álvarez,
Cadarso-Suárez, and Andersen (2009).
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2 TPmsm: Transition Probabilities in 3-State Models

The simplest form of an MSM is the mortality model for survival analysis with only two states
“alive” and “dead” with a single transition. Other common models include the progressive
three-state model, the illness-death model and the competing risks model. The illness-death
model is probably the most used model in the literature, in particular for studying progres-
sion of many diseases. This model describes the dynamics of healthy subjects who may move
to an intermediate “diseased” state before entering into a terminal absorbing state. Many
longitudinal medical data with multiple endpoints can be reduced to this structure. Thus,
methods developed for the illness-death model have a wide range of applications. There are
several issues of interest in an illness-death multi-state model: study of the relationship be-
tween covariates and disease evolution; estimation of transition probabilities; state occupation
probabilities; distributions of time spent in each state, among other topics. In this paper we
will focus on the inference for the transition probabilities. These quantities provide estimates
of the clinical prognosis of a patient at a given point in disease progression, allowing long-term
predictions of the process.

Aalen and Johansen (1978) introduced a nonparametric estimator for these quantities for non-
homogeneous Markov models. Their estimation method extends the Kaplan-Meier estimator
(Kaplan and Meier 1958) to Markov chains. As for the Kaplan-Meier estimator, the standard
error of the Aalen-Johansen estimator may be large when the censoring is heavy, particularly
with a small sample size. To overcome this problem, Moreira, de Uña-Álvarez, and Meira-
Machado (2013) propose a modification of Aalen-Johansen estimator based on presmoothing
(Dikta 1998), which allows for a variance reduction in the presence of censoring. In a recent
paper, Meira-Machado, de Uña-Álvarez, and Cadarso-Suárez (2006) introduce a substitute
for the Aalen-Johansen estimator in the case of a non-Markov illness-death model. They
show that when the Markov assumption does not hold, their estimator may behave much
better than the Aalen-Johansen which may be systematically biased. The idea behind their
estimator is to weight the data by the Kaplan-Meier weights pertaining to the distribution
of the total survival time of the process. However, by removing the Markov condition, the
proposed substitute for the Aalen-Johansen estimator provides undesirably large standard
errors. This problem becomes worse when there is a large proportion of censored data. In
order to overcome this problem, Amorim, de Uña-Álvarez, and Meira-Machado (2011) propose
a modification of the Meira-Machado estimator based on presmoothing. Other estimators
were proposed to estimate the transition probabilities. A valid estimator was provided by
Keilegom, de Uña-Álvarez, and Meira-Machado (2011) for a progressive three-state model.
This methodology assumes that the vector of gap times (time in State 1 and time in State
2) satisfies the nonparametric location-scale regression model, allowing for the transfer of
tail information from lightly censored areas to heavily ones. All these approaches assume
independent censoring and do not account for the influence of covariates. To this regard in
a recent work, in a regression setup, Meira-Machado, de Uña-Álvarez, and Somnath (2012)
introduce feasible estimation methods for the transition probabilities in an illness-death model
conditionally on current or past covariate measures.

Software for multi-state survival analysis has been developed recently. A comprehensive list of
the available packages at the Comprehensive R Archive Network (CRAN) can be seen in the
CRAN task view “Survival Analysis” (Allignol and Latouche 2014). An issue of the Journal
of Statistical Software, entirely devoted to these models, was published in 2011 (Putter 2011).
In R (R Core Team 2014) several packages provide functions for estimating the transition
probabilities. The timereg package (Scheike and Martinussen 2006; Scheike and Zhang 2011)
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can be used to obtain the cumulative incidence probability of a specific cause of failure in
competing risks data. It also provides an estimate of its variance at each fixed time point,
and constructs (1 − α)100% simultaneous confidence bands over a given time interval. The
package cmprsk (Gray 2014) can also be used to obtain the same quantities. The package
etm (Allignol, Schumacher, and Beyersmann 2011) computes and displays the transition
probabilities for the Aalen-Johansen estimator. This package also features a Greenwood-
type estimator of the covariance matrix. The package msm (Jackson 2011) can be used
to obtain estimates for the transition probabilities in time-homogeneous Markov models.
The package p3state.msm (Meira-Machado and Roca-Pardiñas 2011) enables the user to
perform inference in the illness-death model. The main feature of the package is its ability for
obtaining non-Markov estimates for the transition probabilities. Finally, the msSurv package
(Ferguson, Datta, and Brock 2012) can be used to estimate the state occupation probabilities
along with the corresponding variance estimates, and lower and upper confidence intervals.
All of the existing software presents, however, some limitations in practice. Most software
assumes the process to be Markovian and assumes independent censoring. Furthermore such
software does not account for the influence of covariates. In addition, a comparison between
different packages is rather difficult because each of the current programs requests its own
data structure.
This paper describes the R package TPmsm (Araújo, Roca-Pardiñas, and Meira-Machado
2014) which is available from CRAN at https://CRAN.R-project.org/package=TPmsm. The
package aims at implementing nonparametric and semiparametric estimators for the transi-
tion probabilities in 3-state models. The package provides the so-called Aalen-Johansen
estimator typically assumed in Markov processes but it also covers alternative methods which
have been proved to be consistent even without the Markov assumption. Inverse censor-
ing probability reweighting is used in some methods to deal with right censoring. These
approaches lead to consistent estimators even in the presence of dependent censoring. Fi-
nally, two different estimators are implemented that account for the influence of covariates.
Bootstrap confidence bands are provided for all methods. In this article we explain and illus-
trate how numerical and graphical output for all methods can be obtained using the TPmsm
package.
In Section 2 we introduce the notation for the illness-death stochastic model and describe
in detail the proposed estimation methods. In Section 3 we describe the implementation
of the methods in package TPmsm. Some of the methods are illustrated using generated
data in Section 4. Finally, Section 5 illustrates the package’s capabilities using two real data
examples, and Section 6 gives some concluding remarks and proposals for future work.

2. Methodological background
In this paper we consider the progressive illness-death model depicted in Figure 1. We assume
that all subjects are in State 1 at time t = 0, and that they may either visit State 2 at some
time point; or not, going directly to the absorbing state (State 3). The stochastic behavior
of the process is represented by a random vector (T12, T13, T23), where Thj is the potential
transition from State h to State j, 1 ≤ h < j ≤ 3, in which T23 is the sojourn time in State
2. In this model we have two competing transitions 1 → 2 and 1 → 3. Let the sojourn time
in State 1 be denoted by Z = min(T12, T13). The survival time of the process is given by
T = I(T12 ≤ T13)(T12 +T23)+ I(T12 > T13)T13. However, censoring may occur due to follow-up

https://CRAN.R-project.org/package=TPmsm
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limitations, lost cases and so on. Because of censoring, one observes (Z̃, T̃ , ∆1, ∆) where
Z̃ = min(Z, C), T̃ = min(T, C), ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C). Here C denotes the
potential censoring time, which we assume to be independent of the process (that is, C and
(Z, T ) are assumed to be independent).
Given two time points s < t, define the transition probabilities as phj(s, t) = P(X(t) = j∣X(s) =
h). The transition between the three stochastic states is illustrated in Figure 1. There are
five different transition probabilities to estimate: p11(s, t), p12(s, t), p13(s, t), p22(s, t) and
p23(s, t). However, only three of them need to be estimated since the two other transition
probabilities can be obtained from the following relations: p11(s, t) + p12(s, t) + p13(s, t) = 1
and p22(s, t) + p23(s, t) = 1.

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead
 

Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Figure 1: Illness-death model.

In Markov models, the transition probabilities can be calculated from the transition intensities
(that we shall assume exist) that we express as

αhj(t) = lim
∆t→0

phj(t, t +∆t)
∆t

by solving the so-called forward Kolmogorov differential equation (Cox and Miller 1965). For
the illness-death model the transition probabilities have explicit expressions,

p11(s, t) = exp(−A12(s, t) −A13(s, t)),
p22(s, t) = exp(−A23(s, t)),

p12(s, t) = ∫
t

s
p11(s, u)α12(u)p22(u, t)du,

where Ahj(s, t) = ∫ t
s αhj(u)du is the cumulative or integrated intensity between s and t.

In time-homogeneous Markov models the explicit expressions for the transition probabilities
are given by

p11(s, t) = exp(−α12(t − s) − α13(t − s)),
p22(s, t) = exp(−α23(t − s)),

p12(s, t) = α12
α12 + α13 − α23

[exp(−α23(t − s)) − exp(−(α12 + α13)(t − s))].

Details about the inference for the transition intensities can be seen in Andersen and Perme
(2008).
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The transition probabilities can also be estimated nonparametrically or semiparametrically
using the notation shown in the top of this section. The expressions for the transition prob-
abilities are given by

p11(s, t) = P (Z > t)
P (Z > s) , p12(s, t) = P (s < Z ≤ t, T > t)

P(Z > s) ,

p13(s, t) = P (Z > s, T ≤ t)
P (Z > s) , p22(s, t) = P (Z ≤ s, T > t)

P (Z ≤ s, T > s) ,

p23(s, t) = P (Z ≤ s, s < T ≤ t)
P (Z ≤ s, T > s) .

2.1. Aalen-Johansen estimator

The transition probabilities may be estimated via the nonparametric (Aalen-Johansen es-
timator) model. This can be thought as the generalization of the Kaplan-Meier approach
(Kaplan and Meier 1958) for the simple mortality model and was proposed by Aalen and
Johansen (1978) for general non-homogeneous Markov models with a finite number of states.
Explicit formulae of the Aalen-Johansen estimator for the illness-death model are available
(Borgan 1998). Here we give alternative expressions for this estimator using the notation
introduced above. The Aalen-Johansen (AJ) estimate of the transition probability p11(s, t) is
the Kaplan-Meier estimator

p̂AJ
11(s, t) = ∏

s<Z̃i≤t

[1 − ∆1i

nM̃0n(Z̃i)
] , (1)

where

M̃0n(y) =
1
n

n

∑
j=1

I(Z̃j ≥ y).

Similarly, the estimate of the transition probability p22(s, t) is the Kaplan-Meier estimator

p̂AJ
22(s, t) = ∏

s<T̃i≤t,Z̃i<T̃i

[1 − ∆i

nM̃1n(T̃i)
] , (2)

where

M̃1n(y) =
1
n

n

∑
j=1

I(Z̃j < y ≤ T̃j).

Finally, the estimator for p12(s, t) is given by

p̂AJ
12(s, t) = 1

n

n

∑
i=1

p̂AJ
11(s, Z̃−i )p̂AJ

22(Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃i)
nM̃0n(Z̃i)

, (3)

where

p̂AJ
11(s, t−) = lim

u↑t
p̂AJ

11(s, u).
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2.2. Presmoothed Aalen-Johansen estimator

The standard error of the Aalen-Johansen estimator may be large when the censoring is
heavy, particularly with a small sample size. Interestingly, the variance of the Aalen-Johansen
estimator may be reduced by presmoothing (Dikta 1998). Presmoothing the Aalen-Johansen
estimator (Moreira et al. 2013) involves replacing the censoring indicators (in the transition
probabilities p11(s, t) and p22(s, t)) by a smooth fit (e.g., using logistic regression). Then, the
corresponding presmoothed Aalen-Johansen (PAJ) estimator of p11(s, t) is given by

p̂PAJ
11 (s, t) = ∏

s<Z̃i≤t

[1 − m0n(Z̃i)
nM̃0n(Z̃i)

] , (4)

where m0n(Z̃) stands for an estimator of the conditional probability of the event ∆1 = 1 given
Z̃; which can be estimated using logistic regression. The presmoothed version of (2) given by

p̂PAJ
22 (s, t) = ∏

s<T̃i≤t,Z̃i<T̃i

[1 − m1n(Z̃i, T̃i)
nM̃1n(T̃i)

] , (5)

where m1n(Z̃, T̃ ) stands for an estimator of the conditional probability of the event ∆ = 1
given (Z̃, T̃ ) and given that transition 1 → 2 is observed. Finally the transition probability
p12(s, t) can be estimated by plugging (4) and (5) into Equation 3.
In the limit case of no presmoothing, the presmoothed Aalen-Johansen estimator reduces
to the time-honored Aalen-Johansen estimator, which has become the standard tool for es-
timating the transition probabilities in Markovian processes. Moreira et al. (2013) derive
the consistency of the PAJ estimator which may be much more efficient than the original AJ
estimator.
The original and the presmoothed AJ estimators are consistent in Markov models. If the
Markov property assumption is violated, then the consistency of the time-honored Aalen-
Johansen estimator and of its presmoothed version cannot be ensured in general. Alternative
methods that do not rely on the Markov assumption are presented below.

2.3. Kaplan-Meier weighted estimator

Recently Meira-Machado et al. (2006) verified that in non-Markov situations, the use of Aalen-
Johansen estimators to empirically estimate the transition probabilities may be inappropriate.
These authors propose, in the scope of the illness-death model, alternative “Markov-free”
estimators for the transition probabilities, which do not rely on the Markov assumption. The
idea behind estimation is to use the Kaplan-Meier estimator pertaining to the distribution of
the total time to weight the bivariate data. The proposed estimator (Kaplan-Meier weighted
estimator, KMW) is given by

p̂KMW
11 (s, t) = ∑

n
i=1 W1iI(Z̃i > t)
∑n

i=1 W1iI(Z̃i > s)
, (6)

p̂KMW
12 (s, t) = ∑

n
i=1 WiI(s < Z̃i ≤ t, T̃i > t)
∑n

i=1 W1iI(Z̃i > s)
, (7)

p̂KMW
22 (s, t) = ∑

n
i=1 WiI(Z̃i ≤ s, T̃i > t)
∑n

i=1 WiI(Z̃i ≤ s, T̃i > t)
, (8)
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where Wi (and W1i) are Kaplan-Meier weights attached to T̃i (respectively, Z̃i) when estimat-
ing the marginal distribution of T (respectively, Z) from (T̃i, ∆i)’s (respectively, (Z̃i, ∆1i)).
The expression for the Kaplan-Meier weights, Wi, is given by Wi = ∆i

n−i+1∏
i−1
j=1 [1 −

∆j

n−j+1].
Meira-Machado et al. (2006) derive large sample properties of these estimators which may be
generalized to more complicated non-Markov processes.

2.4. Kaplan-Meier presmooth weighted estimator

Recently, Amorim et al. (2011) propose a modification of estimator (6)–(8) based on pres-
moothing, which allows for a variance reduction in the presence of censoring. Basically, this
method is obtained by replacing the censoring indicator variables in the expression of the
Kaplan-Meier weights by a smooth fit of a binary regression. In this estimator (Kaplan-Meier
presmooth weighted estimator, KMPW) the presmoothed Kaplan-Meier weights are given by

W ⋆

i =
m(T̃1i, T̃i)
n −Ri + 1

i−1
∏
j=1
[1 − m(T̃1j , T̃j)

n −Rj + 1
] .

Here, m(x, y) = P(∆2 = 1∣T̃1 = x, T̃ = y, ∆1 = 1). m(T̃1, T̃ ) belongs to a parametric (smooth)
family of binary regression curves, e.g., logistic. Our package provides the results assuming
that m denotes a logistic regression model (KMPW). In practice, we assume that m(x, y) =
m(x, y; β) where β is a vector of parameters which typically will be computed by maximizing
the conditional likelihood of the ∆2’s given (T̃1, T̃ ) for those with ∆1 = 1. In the limit case of
no presmoothing, the KMPW estimator reduces to the KMW estimator. Conditions under which
both estimators are consistent is fully discussed in papers by Meira-Machado et al. (2006)
and Amorim et al. (2011). In the latter paper the authors compare the performance of the
presmoothed (semiparametric) estimator with the purely nonparametric estimator (without
presmoothing) and concluded that the presmoothed estimator gains efficiency. The advan-
tages of presmoothing are more clearly seen with an increasing censoring degree and at the
distribution’s right tail. In general, presmoothing introduces some bias in estimation, while
reducing the variance. This bias component is larger when there is some misspecification in
the chosen parametric model. Importantly, the validity of a given model for presmoothing
can be checked graphically or formally, by applying a goodness-of-fit test. This implies that
the risk of introducing a large bias through a misspecified model can be controlled in practice.

2.5. Inverse probability of censoring weighted estimator

To account for the influence of covariates, Meira-Machado et al. (2012) introduce estimation
methods for the transition probabilities conditionally on current or past measures which we
denote by X. The authors provide two competing nonparametric regression estimators for the
conditional transition probabilities, phj(s, t∣X), both valid under certain regularity conditions
even when the system is non-Markovian. The two estimators use different schemes of inverse
censoring probability reweighting to deal with right censoring. In both estimators, local
smoothing is done by introducing regression weights that are either based on a local constant
(i.e., Nadaraya-Watson) or a local linear regression. To introduce these estimators, we need
to introduce first the distribution function of C given X, GX . Let GXi denote the conditional
distribution function of C ∣ X = Xi and let ĜXi stand for its estimator. This can be done
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using the estimator introduced by Beran (1981),

Ĝx(t) = ∏
Ti≤t,∆i=0

[1 − NW0i(x, an)
∑n

j=1 I(Tj ≥ Ti)NW0j(x, an)
] , (9)

with
NW0i(x, an) =

K0 ((x −Xi)/an)
∑n

j=1 K0 ((x −Xj)/an)
,

where NW0i(x, an) are the Nadaraya-Watson (NW) weights, K0 is a known probability density
function and an is a sequence of bandwidths. This estimator reduces to the so-known Kaplan-
Meier (Kaplan and Meier 1958) estimator when all weights are equal. Then, the inverse
probability censoring weighted estimators (IPCW) are given by

p̂IPCW
11 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i>t)∆i

1−ĜXi
(T̃−)

∑n
i=1 NW1i(x, bn) I(Z̃i>s)∆i

1−ĜXi
(T̃−)

, (10)

p̂IPCW
12 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(s<Z̃i≤t,T̃i>t)∆i

1−ĜXi
(T̃−)

∑n
i=1 NW1i(x, bn) I(Z̃i>s)∆i

1−ĜXi
(T̃−)

, (11)

p̂IPCW
22 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>t)∆i

1−ĜXi
(T̃−)

∑n
i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>s)∆i

1−ĜXi
(T̃−)

, (12)

where NW1i(x, bn) are NW weights as introduced above and ĜXi(T̃−) = Ĝx=Xi(T̃−). Alterna-
tively local linear weights can also be introduced.
An alternative approach that also accounts for the influence of covariates is based on the Lin,
Sun, and Ying (1999) approach for the bivariate distribution function. Then, a different set
of estimators (LIN) are given by

p̂LIN
11 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i>t)

1−ĤXi
(t−)

∑n
i=1 NW1i(x, bn) I(Z̃i>s)

1−ĤXi
(s−)

, (13)

p̂LIN
12 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(s<Z̃i≤t,T̃i>t)

1−ĜXi
(t−)

∑n
i=1 NW1i(x, bn) I(Z̃i>s)

1−ĜXi
(s−)

, (14)

p̂LIN
22 (s, t∣X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>t)

1−ĜXi
(t−)

∑n
i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>s)

1−ĜXi
(s−)

, (15)

where ĤX stands for the Kaplan-Meier estimator of the conditional distribution of C given
X based on the (Z̃i, 1 −∆1i)’s. This estimator is defined in the same way as Ĝx.
Here we assume that C is independent of (Z, T ) given X; this assumption does not exclude
the possibility of dependent censoring. The performance of the two estimators has been
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evaluated through simulations, showing that they are valid even when the system is non-
Markov or conditionally non-Markov. Simulation results show that the general performance
difference between the two methods is quite small, and both methods perform quite well.
However, one of the two approaches (the LIN-based one) has the drawback of occasionally
providing nonmonotone curves for transition probabilities which are indeed monotone and,
therefore, its practical use is less recommendable.

2.6. Location-scale estimator
Other estimators were proposed to estimate the transition probabilities. A valid estimator
was provided by Keilegom et al. (2011). This methodology assumes that the vector of gap
times (Z, Y ), where Y = T − Z, satisfies the nonparametric location-scale regression model,
allowing for the transfer of tail information from lightly censored areas to heavily ones. An
automatic bandwidth procedure was proposed by Meira-Machado, Roca-Pardiñas, Keilegom,
and Cadarso-Suárez (2013) for this methodology.
Consider the nonparametric location-scale regression model (LS) Y = m(Z) + σ(Z)ϵ, where
the functions m and σ are ‘smooth’, and ϵ is independent of Z. Under this model, the
authors propose a nonparametric estimator of the distribution of the error variable, Fϵ, to
introduce nonparametric estimators for the transition probabilities. They use a Kaplan-Meier
estimator of Fϵ based on the (Êi, ∆i)’s (where Êi = (Ỹi − m̂(Z̃i))/σ̂(Z̃i)) which is the key for
the construction of an estimator for the conditional distribution of the second gap time,
F̂ (y∣x) = F̂ϵ(y−m̂(x)

σ̂(x) ). The location and scale functionals are estimated using an extension of
the Beran (1981) estimator, which copes with censoring in the first gap time. Then, estimators
for the transition probabilities can be obtained from the following expressions:

p̂LS
11(s, t) = (1 − F̂1(t))/(1 − F̂1(s)),

p̂LS
12(s, t) = 1

1 − F̂1(s)
∫

t

s
[1 − F̂ (t − u∣u)] F̂1(du),

p̂LS
22(s, t) = ∫

s
0 [1 − F̂ (t − u∣u)] F̂1(du)

∫ s
0 [1 − F̂ (s − u∣u)] F̂1(du)

,

where F1(⋅) is the marginal distribution of the first gap time, which we may estimate by the
Kaplan-Meier estimator based on the (Z̃i, ∆1i)’s.
Simulations reported in Meira-Machado et al. (2013) suggest that the transfer of tail informa-
tion may improve the estimation of the transition probabilities especially in points where the
uncensored information is scarce. The authors compared the location-scale method with the
estimator by Meira-Machado et al. (2006) in several scenarios. It was found that when the
deviation from the location-scale model was only minor, the location-scale method outper-
forms the Kaplan-Meier weighted estimator (Meira-Machado et al. 2006). However, when the
model deviates a lot from a location-scale model, the later method becomes better. Another
drawback of the location-scale model is that this method can only be used in the progressive
three-state model.

2.7. Occupation probabilities
Another important target in multi-state modeling is the estimation of the state occupation
probabilities. For the illness-death model there are in essence three state occupation proba-
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bilities to calculate, p11(0, t), p12(0, t) and p13(0, t). Datta and Satten (2001) show that these
quantities can be estimated using Aalen-Johansen estimators even when the process is not
Markov. Though all methods introduced in the previous sections provide valid estimators for
these quantities, the Markovian approaches (AJ and PAJ) are recommended.

3. Package description

The TPmsm software package contains functions that calculate estimates for the transition
probabilities. As mentioned in Section 2, this software package can be used to implement
seven methods (AJ, PAJ, KMW, KMPW, IPCW, LIN and LS). This software package is intended to be
used within the statistical software program R (R Core Team 2014). TPmsm is composed of
several functions that allow users to obtain estimates and plots of the transition probabilities.
Table 1 provides a summary of some of the functions in the package. Details on the usage of
these functions can be obtained with the corresponding help pages.

Function Description
dgpTP Generate data from an illness-death model (based on some known copula

functions). By default returns a data set of class ‘survTP’.
corrTP Correlation between the bivariate times for some copula distributions.
survTP Set up adequate data set of class ‘survTP’ for implementing all the methods.
transAJ Aalen-Johansen (AJ) estimates for the transition probabilities.
transPAJ Presmoothed Aalen-Johansen (PAJ) estimates for the transition probabilities.
transKMW Kaplan-Meier weighted (KMW) estimates for the transition probabilities.
transKMPW Kaplan-Meier presmoothed weighted (KMPW) estimates for the transition

probabilities.
transIPCW Inverse probability of censoring weighted (IPCW) estimates for the transition

probabilities.
transLIN LIN-based (LIN) estimates for the transition probabilities.
transLS Location-scale (LS) estimates for the transition probabilities.
plot Plots for the transition probabilities.
setThreadsTP Specifies the number of threads used by default in parallel sections.
setPackageSeedTP Set the initial package seed.

Table 1: Summary of functions in the package.

It should be noted that to apply the methods described in Section 2 one needs the following
variables: time1, event1, Stime and event. A single covariate can also be included (they
are necessary only for IPCW and LIN methods). The variable time1 represents the observed
time in State 1 (“healthy”), and event1 the corresponding status/censoring indicator (if the
survival time is a censored observation, the value is 0 and otherwise the value is 1). The
variable Stime represents the total survival time (time to the absorbing state). If event1 =
0, then the total survival time is equal to the observed time in State 1. The variable event
is the final status of the individual (takes the value 1 if the final event of interest is observed
and 0 otherwise).
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4. Data generation
Users may use the function dgpTP to generate data from the illness-death model. We assume
that all individuals are in the “healthy” state at time t = 0. Therefore, the patient’s history
(or course) may be divided into two groups according to whether the disease occurred (that is,
passing through State 2) (1→ 2→ 3) or not (1→ 3). We separately consider these two possible
subgroups of individuals. For the first subgroup of individuals, the successive gap times
(Z, T −Z) can be simulated from two of the most known copula functions: the Farlie-Gumbel-
Morgenstern copula with exponential marginals and the bivariate Weibull distribution.
In the following, using the dgpTP function we will simulate data from the illness-death model
using Gumbel’s bivariate exponential distribution (dist = "exponential")
F12(x, y) = F1(x)F2(y) [1 + θ {1 − F1(x)} {1 − F2(y)}] with unit exponential margins
(dist.par = c(1, 1)). The parameter θ controls for the amount of dependency between
the gap times (Z, T −Z). Theoretical correlation between the gap times can be obtained us-
ing the corrTP function. For the second subgroup of individuals (those that go directly from
State 1 to State 3), the corresponding survival time is simulated according to an exponential
with rate parameter 1.
The computation and the implementation of the proposed estimator involves the construc-
tion of pointwise confidence intervals by means of a bootstrap approach and in some cases
the choice of an appropriate bandwidth. Thus, some of the methods implemented in pack-
age TPmsm can be computationally demanding. To obtain the point estimation and the
pointwise confidence intervals, efficient algorithms were developed and implemented in the
C programming language. The most computationally demanding parts of the code, namely
those that involve the bootstrap and cross-validation techniques, were parallelized by means
of the OpenMP API. This should considerably increase performance on multi-core/multi-
threading machines. To ensure the reproducibility of the results reported in the paper, two
threads were considered (setThreadsTP(2)). The random number generator with multiple
independent streams ((L’Ecuyer 1999),(L’Ecuyer, Simard, Chen, and Kelton 2002) and (Karl,
Eubank, Milovanovic, Reiser, and Young 2014)) was implemented for parallel computation
of uniform pseudorandom numbers. Package TPmsm own implemementation of a random
number generator makes it independent of R, requiring a different function for defining a seed.
The function setPackageSeedTP requires a vector of six integers.

library("TPmsm");
setThreadsTP(2);
seed <- c(2718, 3141, 5436, 6282, 8154, 9423);
setPackageSeedTP(seed);
sim_data_exp <- dgpTP(n = 1000, corr = 0, dist = "exponential",

dist.par = c(1, 1), model.cens = "uniform", cens.par = 3,
state2.prob = 0.5);

This input command will simulate 1000 observations (n = 1000) assuming no correlation in
Gumbel’s bivariate exponential distribution (corr = 0), using an independent uniform cen-
soring time (model.cens = "uniform"), according to model U(0, 3) (cens.par = 3). The
use of corr = 0 in Gumbel’s bivariate exponential distribution leads to independent gap
times and therefore to Markov data. The proportion of transitions into State 2 is given by
the argument state2.prob (a value of 1 corresponds to the progressive three-state model).
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To obtain the estimates for the methods proposed in Section 2 we can use the functions
shown in Table 1. As in the simulation by Amorim et al. (2011) and Moreira et al. (2013)
we are going to obtain estimates for transition probabilities at values s = 0.5108 and t
= 0.9163. The true values for the transition probabilities are: p11(s, t) = P(Z>t)

P(Z>s) = 0.667,
p12(s, t) = P(s<Z≤t,T>t)

P(Z>s) = 0.135 and p22(s, t) = P(Z≤s,T>t)
P(Z≤s,T>s) = 0.666. The following two input

commands provide the estimates for the AJ and PAJ methods. Since the process is Markovian
these are the recommended approaches. With these input commands we obtain the estimates
for the transition matrix together with 95% (conf.level = 0.95) pointwise confidence in-
tervals (conf = TRUE) using 1000 bootstrap replicates (n.boot = 1000). The construction
of the pointwise confidence intervals is obtained by randomly sampling the n items from the
original data set with replacement. This can be achieved using the percentile bootstrap inter-
val (method.boot = "percentile") or using the basic bootstrap interval (method.boot =
"basic"). By default all functions use the percentile bootstrap method (Davison and Hinkley
1997).

transAJ(object = sim_data_exp, s = 0.5108, t = 0.9163, conf = TRUE,
conf.level = 0.95, n.boot = 1000);

## Aalen-Johansen transition probabilities
##
## Estimates of P(0.5108, 0.9163)
## 1 2 3
## 1 0.6479348 0.1813716 0.1706936
## 2 0.0000000 0.7539452 0.2460548
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6055291 0.1494781 0.1401043
## 2 0.0000000 0.6854783 0.1852007
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
## 1 2 3
## 1 0.6929826 0.2135551 0.2029478
## 2 0.0000000 0.8147993 0.3145217
## 3 0.0000000 0.0000000 1.0000000

transPAJ(object = sim_data_exp, s = 0.5108, t = 0.9163, conf = TRUE,
conf.level = 0.95, n.boot = 1000);

## Presmoothed Aalen-Johansen transition probabilities
##
## Estimates of P(0.5108, 0.9163)
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## 1 2 3
## 1 0.6718558 0.1841269 0.1440172
## 2 0.0000000 0.7314865 0.2685135
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6350731 0.1493700 0.1132212
## 2 0.0000000 0.6702976 0.2105773
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
## 1 2 3
## 1 0.7105014 0.2179436 0.1747968
## 2 0.0000000 0.7894227 0.3297024
## 3 0.0000000 0.0000000 1.0000000

Results reveal accuracy for both methods for which the true values are within the bootstrap
confidence bands. The bootstrap confidence bands are narrower in the case of the presmoothed
Aalen-Johansen estimator revealing less variability for this method. In general, the results for
the lower and upper bounds of the bootstrap confidence interval greatly depend on the sample
size of the data set and the number of bootstrap simulations. In this case, a second and a third
set of 1000 resamples gave similar results for the bootstrap confidence intervals, suggesting
that the number of resamples are enough. The CPU time needed for running the transAJ
function varies depending on whether bootstrap confidence bands are requested or not, the
sample size, and the type of processor in the computer. The command presented above took
no more than 1 second on a PC with a four Core Intel i7 processor with 8 GB memory. The
same input command but with n = 10000 resamples took less than a few seconds.
Non-Markov data can also be generated using correlated gap times in Gumbel’s bivariate
exponential distribution. For example, using a maximum correlation of 25% (using corr =
1 in the dgpTP function) as shown below.

setPackageSeedTP(seed);
sim_data_exp2 <- dgpTP(n = 1000, corr = 1, dist = "exponential",

dist.par = c(1, 1), model.cens = "uniform", cens.par = 3,
state2.prob = 0.5);

The following input commands provide the estimates (with bootstrap confidence bands) for
the KMW and KMPW methods at values s = 0.5108 and t = 0.9163. The true values for the
transition probabilities at these values are: p11(s, t) = 0.667, p12(s, t) = 0.134 and p22(s, t) =
0.558. Since the process is not Markov these are the recommended approaches.
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transKMW(object = sim_data_exp2, s = 0.5108, t = 0.9163, conf = TRUE,
conf.level = 0.95, n.boot = 1000);

## Kaplan-Meier Weighted transition probabilities
##
## Estimates of P(0.5108, 0.9163)
## 1 2 3
## 1 0.6479348 0.1837512 0.1683140
## 2 0.0000000 0.5140501 0.4859499
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6055291 0.1504573 0.1340369
## 2 0.0000000 0.4039540 0.3734877
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
## 1 2 3
## 1 0.6929826 0.2194789 0.2042371
## 2 0.0000000 0.6265123 0.5960460
## 3 0.0000000 0.0000000 1.0000000

transKMPW(object = sim_data_exp2, s = 0.5108, t = 0.9163, conf = TRUE,
conf.level = 0.95, n.boot = 1000);

## Presmoothed Kaplan-Meier Weighted transition probabilities
##
## Estimates of P(0.5108, 0.9163)
## 1 2 3
## 1 0.6718558 0.1630406 0.1651035
## 2 0.0000000 0.5337576 0.4662424
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6350731 0.1358723 0.1377945
## 2 0.0000000 0.4357253 0.3729777
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
## 1 2 3
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## 1 0.7105014 0.1907409 0.1914515
## 2 0.0000000 0.6270223 0.5642747
## 3 0.0000000 0.0000000 1.0000000

Results reveal that both methods perform very well. As expected, the presmooth method
achieved less variability, with narrower bootstrap confidence bands. Results for the Aalen-
Johansen type estimators (AJ and PAJ) reveal a systematic bias for the transition from State
2 to State 3 (results not shown).
In addition to the numerical results graphical output can also be obtained. This will be shown
in the next section using two data sets: the widely used and well-known colon cancer data
and data from a bladder cancer study. Details about these data sets are given below.

5. Examples of application

To illustrate our estimators we consider two real data sets. One of these data sets comes
from the well-known colon cancer study which is freely available as part of the R survival
package (Therneau and Grambsch 2000; Therneau 2014). In addition to this data set we also
use data from a bladder cancer study (Byar 1980) conducted by the Veterans Administration
Cooperative Urological Research Group.

5.1. Colon cancer data

For illustration, we apply some of the proposed methods of Section 2 to data from a large
clinical trial on Duke’s stage III patients, affected by colon cancer, that underwent a curative
surgery for colorectal cancer (Moertel, Fleming, McDonald et al. 1990). In this study, some
of these patients have residual cancer, which leads to disease recurrence and death (in some
cases). From the total of 929 patients, 468 developed a recurrence and among these 414 died.
38 patients have died of causes unrelated to their disease and without evidence of recurrence.
The remaining 423 patients contributed with censored survival times. For each individual, an
indicator of his/her final vital status (censored or not), the survival times (time to recurrence,
time to death) from the entry of the patient in the study (in days), and a vector of covariates
including age (in years) and recurrence (coded as 1 = yes; 0 = no) were recorded. The
covariate recurrence is a time-dependent covariate which can be expressed as an intermediate
event and modeled using the illness-death model with states “alive and disease-free”, “alive
with recurrence” and “dead”.
By including covariates depending on the history (using a Cox proportional hazards model),
we verified that the mortality transition for recurring patients is affected by the time spent in
the previous state (p value < 0.001). This allowed us to conclude that the Markov assumption
may be unsatisfactory for the colon cancer data set and that, consequently, Aalen-Johansen
type estimators should not be used. Thus, in this section we illustrate the use of two “Markov-
free” estimators (KMW and KMPW) as well as two additional estimators (IPCW and LIN) that were
proposed to estimate the transition probabilities conditionally on current or past covariate
measures such as age.
Below is an excerpt of the data with one row per individual.
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data("colonTP", package = "TPmsm");
head( head(colonTP[ , c(1:4, 7)]) );

## time1 event1 Stime event age
## 1 968 1 1521 1 43
## 2 3087 0 3087 0 63
## 3 542 1 963 1 71
## 4 245 1 293 1 66
## 5 523 1 659 1 69
## 6 904 1 1767 1 57

Each line represents the information from one individual in the study. The variable time1
denotes the sojourn time in State 1 whereas Stime is the total time of survival. event1
and event are the corresponding indicator statuses. Among the first six individuals, only
individual represented by line 2 remains alive (and without having had a recurrence) at the
end of the study. All the remaining individuals had a recurrence and died before the end of
the study. For example, the individual represented by line 1 had a recurrence at day 968 and
died at day 1521. Note that time1 < Stime means that a transition from State 1 to State 2
(i.e., recurrence) occurred.
We computed the estimated values for the transition probabilities phj(s, t) for several pairs
(s, t), s < t. For illustration purposes we only report the estimated values of phj(365, 1096)
(one year and three years) for the KMW and KMPW methods with 95% bootstrap confidence
intervals.

colon_obj <- with( colonTP, survTP(time1, event1, Stime, event, age) );
colon_obj_TP <- transKMW(object = colon_obj, s = 365, t = 1096,

conf = TRUE, conf.level = 0.95);
colon_obj_TP;

## Kaplan-Meier Weighted transition probabilities
##
## Estimates of P(365, 1096)
## 1 2 3
## 1 0.7192603 0.1432380 0.1375017
## 2 0.0000000 0.1570985 0.8429015
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6853757 0.1177304 0.1114069
## 2 0.0000000 0.1020286 0.7848585
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
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## 1 2 3
## 1 0.752907 0.1693951 0.1646936
## 2 0.000000 0.2151415 0.8979714
## 3 0.000000 0.0000000 1.0000000

colon_obj2_TP <- transKMPW(object = colon_obj, s = 365, t = 1096,
conf = TRUE, conf.level = 0.95);

colon_obj2_TP;

## Presmoothed Kaplan-Meier Weighted transition probabilities
##
## Estimates of P(365, 1096)
## 1 2 3
## 1 0.7194552 0.1433486 0.1371961
## 2 0.0000000 0.1582020 0.8417980
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.6853516 0.1182992 0.1104852
## 2 0.0000000 0.1050996 0.7818987
## 3 0.0000000 0.0000000 1.0000000
##
## 97.5%
## 1 2 3
## 1 0.7511722 0.1699785 0.1598693
## 2 0.0000000 0.2181013 0.8949004
## 3 0.0000000 0.0000000 1.0000000

The outputs for the transition probabilities could be useful in understanding the patients’
illness stage over time. Plots for these quantities can easily be obtained. Figure 2 plots the
transition probabilities phj(365, t) for all allowed transitions using the KMW method. This plot
can be obtained using the following input commands:

colon_obj_TP <- transKMW(object = colon_obj, s = 365, conf = TRUE,
conf.level = 0.95);

plot(colon_obj_TP, col = seq_len(5), lty = 1, ylab = "p_hj(365,t)");

Figure 3 depicts the KMW estimates of p12(s = 365, t) as functions of the time (for a fixed value
of s = 365) together with a 95% pointwise confidence band based on simple bootstrap. The
estimates shown in the main curve indicate that this probability increases until around time
t = 600 and afterwards decreases.
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Figure 2: Transition probability estimates using the KMW method. Colon cancer data.

plot(colon_obj_TP, tr.choice = "1 2", conf.int = TRUE, ylim = c(0, 0.2),
legend = FALSE, ylab = "p12(365,t)");

Estimates for the conditional transition probabilities can be obtained using two methods (IPCW
and LIN). Below we present the input command to obtain the estimates for the IPCW method
for a vector of two ages (40 and 68). Results suggest a real influence of the covariate age in
the survival prognosis. More specifically, patients with 40 years have a larger probability of
recurrence than patients with 68 years. Note that the estimate obtained for those patients with
40 years is not within the bootstrap confidence bands obtained for those with 68 years. These
insights can also be seen in Figures 4 and 5 which depict respectively the IPCW estimates of the
conditional transition probabilities p11(365, 1096∣age) and p12(365, 1096∣age) as functions of
the covariate age together with a 95% pointwise confidence band based on simple bootstrap.
In both plots it is seen that these curves are not constant. Furthermore, the effects of age
depicted in Figure 5, suggest a real influence of age on survival. More specifically, patients near
the forties have a larger probability of recurrence than older patients. Note that it would not
be possible to include a horizontal line within the confidence bands in this plot. An alternative
method that accounts for the influence of continuous covariates is the LIN method which is
implemented in the transLIN function. Similarly, transIPCW can also handle one covariate.

CTP_obj <- transIPCW(colon_obj, s = 365, t = 1096, x = c(40, 68),
conf = TRUE, n.boot = 1000, method.boot = "percentile");

CTP_obj;
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Figure 3: Transition probability estimates, with bootstrap confidence bands, using the KMW
method. Colon cancer data.

## Inverse Probability Censoring Weighted conditional transition probabilities
##
## Estimates of P(365, 1096 | 40)
## 1 2 3
## 1 0.6586309 0.3004002 0.0409689
## 2 0.0000000 0.2063084 0.7936916
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.5358529 0.1925062 0.007045676
## 2 0.0000000 0.0000000 0.561993075
## 3 0.0000000 0.0000000 1.000000000
##
## 97.5%
## 1 2 3
## 1 0.7732796 0.4232946 0.08588793
## 2 0.0000000 0.4380069 1.00000000
## 3 0.0000000 0.0000000 1.00000000
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Figure 4: Evolution of the transition probability p11(365, 1096) along the covariate age with
95% bootstrap confidence bands based on the IPCW method. Colon cancer data.
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Figure 5: Evolution of the transition probability p12(365, 1096) along the covariate age with
95% bootstrap confidence bands based on the IPCW method. Colon cancer data.
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##
## Estimates of P(365, 1096 | 68)
## 1 2 3
## 1 0.6893005 0.1321605 0.1785390
## 2 0.0000000 0.1325104 0.8674896
## 3 0.0000000 0.0000000 1.0000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.618202 0.08461320 0.1259819
## 2 0.000000 0.04160551 0.7545302
## 3 0.000000 0.00000000 1.0000000
##
## 97.5%
## 1 2 3
## 1 0.7500113 0.1845222 0.2377143
## 2 0.0000000 0.2454698 0.9583945
## 3 0.0000000 0.0000000 1.0000000

plot(CTP_obj, plot.type = "c", tr.choice = "1 1", conf.int = TRUE,
xlab = "Age", legend = FALSE, ylab = "p11(365,1096|age)");

plot(CTP_obj, plot.type = "c", tr.choice = "1 2", conf.int = TRUE,
xlab = "Age", legend = FALSE, ylab = "p12(365,1096|age)");

Alternatively, we can view all transitions in the same plot using the following input command
(Figure 6):

plot(CTP_obj, plot.type = "c", col = seq_len(5), lty = 1, xlab = "Age",
ylab = "p_hj(365,1096|age)");

A contour plot of the transition probabilities can be obtained using the contour function; a
grid of colored or gray-scale rectangles with colors corresponding to the values of the transition
probabilities can be obtained using the image function. Details on the usage of these functions
can be obtained within the corresponding help pages.

5.2. Example of application: Bladder cancer study

The methods described in Section 2.6 are illustrated using data from a bladder cancer study
(Byar 1980) conducted by the Veterans Administration Cooperative Urological Research
Group. In this study, patients had superficial bladder tumors that were removed by transure-
thral resection. Many patients had multiple recurrences (up to a maximum of 9) of tumors
during the study, and new tumors were removed at each visit. For illustration purposes we
re-analyze data from 85 individuals in the placebo and thiotepa treatment groups; these data
are available as part of the R survival package. Here, only the first two recurrence times
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Figure 6: Evolution of the transition probabilities phj(365, 1096) along the covariate age,
based on the IPCW method. Colon cancer data.

(in months) and the corresponding gap times, Z and Y = T − Z, are considered. Thus, we
have a progressive three-state model with state “alive and disease-free”, “first recurrence”
and “second recurrence”. From the total of 85 patients, 47 relapsed at least once and, among
these, 29 experienced a new recurrence.
For large values of s and t, the transition probabilities phj(s, t) will be difficult to estimate in
a completely nonparametric way. This will be particularly true in situations where censoring
percentages are high as for our data set for which we have a total amount of censoring of 66%.
The location-scale method is appropriate for the bladder cancer data since this methodology
is mainly relevant for estimation in the right tail of the distribution where the censoring effects
are strong at those points (uncensored information is scarce).
We will calculate estimates for the transition probabilities in several points and plot these
estimates. This will be done using the function transLS.

data("bladderTP", package = "TPmsm");
head(bladderTP);

## time1 event1 Stime event
## 1 1 0 1 0
## 2 4 0 4 0
## 3 7 0 7 0
## 4 10 0 10 0
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## 5 6 1 10 0
## 6 14 0 14 0

We computed the estimated values for the transition probabilities phj(s, t) for several pairs
(s, t), s < t. For illustration purposes we only report the estimated values of phj(3, 8) for the
LS method with 95% bootstrap confidence intervals. The success of the LS method greatly
depends on the choice of an appropriate bandwidth. The selection of the optimal bandwidth
is highly computationally intensive, but is crucial to the success of the location-scale method.
To select the bandwidth we use a weighted cross-validation error criterion, with weights based
on the Kaplan-Meier estimator. Details about these procedures can be seen in the paper by
Meira-Machado et al. (2013). Results for the transition probabilities phj(3, 8) shown below
were obtained using a grid of 100 bandwidth values (nh = 100) over the interval between
0.0001 and 1 (h = c(0.0001, 1)) and considering 100 cross-validation samples (ncv = 100).

bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
LS_obj <- transLS(object = bladderTP_obj, s = 3, t = 8, h = c(0.0001, 1),

nh = 100, ncv = 100, conf = TRUE);
LS_obj;

## Location-Scale transition probabilities
##
## Estimates of P(3, 8)
## 1 2 3
## 1 0.8391534 0.1552910 0.005555556
## 2 0.0000000 0.9222722 0.077727794
## 3 0.0000000 0.0000000 1.000000000
##
## Bootstrap confidence bands with 1000 samples
##
## 2.5%
## 1 2 3
## 1 0.7384387 0.06143224 0.000000000
## 2 0.0000000 0.86275399 0.005852838
## 3 0.0000000 0.00000000 1.000000000
##
## 97.5%
## 1 2 3
## 1 0.9310463 0.2554292 0.0467999
## 2 0.0000000 0.9941472 0.1372460
## 3 0.0000000 0.0000000 1.0000000

Plots for the transition probabilities can also be obtained. Figure 7 plots the transition
probabilities phj(3, t) for all allowed transitions. In Figure 8 we can see the plot for the
transition probability p12(3, t) along the pointwise confidence bands using the LS method.
These plots are obtained using the following input commands:
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Figure 7: Transition probability estimates using the LS method. Bladder cancer data.
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Figure 8: Transition probability estimates, with bootstrap confidence bands, using the LS
method. Bladder cancer data.
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LS2_obj <- transLS(object = bladderTP_obj, s = 3, t = 60, h = c(0.0001, 1),
nh = 100, ncv = 100, conf = TRUE);

plot(LS2_obj, col = seq_len(5), lty = 1, ylab = "p_hj(3,t)");
plot(LS2_obj, tr.choice = "1 2", conf.int = TRUE, ylab = "p12(3,t)",

ylim = c(0, 0.325), legend = FALSE);

6. Conclusion
This paper discusses the implementation of some newly developed methods for the transition
probabilities in the illness-death model in an R package. The TPmsm package uses seven
nonparametric and semiparametric estimators. One of these estimators is the Aalen-Johansen
estimator (Aalen and Johansen 1978) under the assumption of a Markovian data generating
process. A modification of the Aalen-Johansen estimator (Moreira et al. 2013), based on a
preliminary estimation (presmoothing) of the censoring probability for the total time, given
the available information is also implemented. This method allows for a variance reduction in
the presence of censoring, in particular for situations with high percentages of censored total
time among the uncensored subjects in State 1.
If there is no evidence against the Markov condition then the time honored Aalen-Johansen
estimator and its presmoothed version will be preferred. If the Markov property is violated,
then the consistency of these estimators cannot be ensured in general. Exceptions to this
are the estimator for the occupation probabilities. Alternative estimators of the transition
probabilities not relying on the Markov condition were recently proposed (Meira-Machado
et al. 2006; Amorim et al. 2011) and are implemented in the package. As a drawback, these
alternative methods will suffer from a larger variance in estimation, particularly when the
sample size is small and there is a large censoring degree. One alternative method for these
scenarios was provided by Keilegom et al. (2011) for a progressive three-state model. The key
of this methodology is the transfer of tail information from lightly censored areas to heavily
ones.
The package also implements two methods that account for dependent censoring and allow
for the inclusion of covariates. These two approaches are free from the Markov assumption.
The functions implementing these methods use a kernel density and a bandwidth. We believe
that the choice of the kernel density has relatively little impact on the estimation results.
However, the use of different bandwidths might have a substantial effect on the performance
of the estimators. To this end we implemented the use of the dpik function which is available
from the R KernSmooth package (Wand 2014). It might be worthwhile to include other
options and to investigate their impact on the estimation results.
A function called TPmsmOut can be used to convert an object of class ‘data.frame’ with the
structure of the data input as described in Section 3 to the structure of the data input used in
the p3state.msm package. Essentially, this involves a transformation of some variables and a
renaming of other variables. With this function users may connect the TPmsm package with
the p3state.msm package and perform Cox-type multi-state regression.
We plan to constantly update the TPmsm package to improve its limitations and to cope
with other estimators.
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